MEF2 transcriptional activity maintains mitochondrial adaptation in cardiac pressure overload.

نویسندگان

  • Hamid el Azzouzi
  • Ralph J van Oort
  • Roel van der Nagel
  • Wim Sluiter
  • Martin W Bergmann
  • Leon J De Windt
چکیده

AIMS The transcription factor MEF2 is a downstream target for several hypertrophic signalling pathways in the heart, suggesting that MEF2 may act as a valuable therapeutic target in the treatment of heart failure. METHODS AND RESULTS In this study, we investigated the potential benefits of overall MEF2 inhibition in a mouse model of chronic pressure overloading, by subjecting transgenic mice expressing a dominant negative form of MEF2 (DN-MEF2 Tg) in the heart, to transverse aortic constriction (TAC). Histological analysis revealed no major differences in cardiac remodelling between DN-MEF2 Tg and control mice after TAC. Surprisingly, echocardiographic analysis revealed that DN-MEF2 Tg mice had a decrease in cardiac function compared with control animals. Analysis of the mitochondrial respiratory chain showed that DN-MEF2 Tg mice displayed lower expression of NADH dehydrogenase subunit 6 (ND6), part of mitochondrial Complex I. The reduced expression of ND6 in DN-MEF2 Tg mice after pressure overload correlated with an increase in cell death secondary to overproduction of reactive oxygen species (ROS). CONCLUSION Our data suggest that MEF2 transcriptional activity is required for mitochondrial function and its inhibition predisposes the heart to impaired mitochondrial function, overproduction of ROS, enhanced cell death, and cardiac dysfunction, following pressure overload.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface.

Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic an...

متن کامل

Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart.

RATIONALE Mitogen-activated protein kinase (MAPK) pathways provide a critical connection between extrinsic and intrinsic signals to cardiac hypertrophy. Extracellular signal-regulated protein kinase (ERK)5, an atypical MAPK is activated in the heart by pressure overload. However, the role of ERK5 plays in regulating hypertrophic growth and hypertrophy-induced apoptosis is not completely underst...

متن کامل

Regulation of peroxisome proliferator-activated receptor coactivator 1 (PGC-1 ) and mitochondrial function by MEF2 and HDAC5

The myocyte enhancer factor-2 (MEF2) transcription factor regulates muscle development and calcium-dependent gene expression. MEF2 activity is repressed by class II histone deacetylases (HDACs), which dissociate from MEF2 when phosphorylated on two serine residues in response to calcium signaling. To explore the potential importance of MEF2 HDAC interactions in the heart, we generated transgeni...

متن کامل

Dynamic changes of hemodynamic parameters and cardiac transcription of sirtuins in adaptive and mal-adaptive phases of pressure overload-induced hypertrophy in rats

Introduction: The aim of the study was to investigate the structural and hemodynamic changes as well as cardiac transcriptional profile of the key regulatory proteins, sirtuins family (SIRT1-7), in adaptive and mal-adaptive phases of left ventricular hypertrophy (LVH). Methods: LVH was induced in male Wistar rats (190±20g) by abdominal aortic banding. The third and sixteenth weeks post-surgery ...

متن کامل

Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity.

Cytoskeletal proteins have been implicated in the pathogenesis of cardiomyopathy, but how the cytoskeleton influences the transcriptional alterations associated with adverse cardiac remodeling remains unclear. Striated muscle activator of Rho signaling (STARS) is a muscle-specific actin-binding protein localized to the Z disc that activates serum response factor-dependent (SRF-dependent) transc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of heart failure

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2010